kafka入门介绍

    原创
半兽人 发表于: 2015-01-01   最后更新时间: 2019-10-09  

Kafka作为一个分布式的流平台,这到底意味着什么?

我们认为,一个流处理平台具有三个关键能力:

  1. 发布和订阅消息(流),在这方面,它类似于一个消息队列或企业消息系统。
  2. 以容错(故障转移)的方式存储消息(流)。
  3. 在消息流发生时处理它们。

什么是kafka的优势?它主要应用于2大类应用:

  1. 构建实时的流数据管道,可靠地获取系统和应用程序之间的数据。
  2. 构建实时流的应用程序,对数据流进行转换或反应。

要了解kafka是如何做这些事情的,让我们从下到上深入探讨kafka的能力。

首先几个概念:

  1. kafka作为一个集群运行在一个或多个服务器上。
  2. kafka集群存储的消息是以topic为类别记录的。
  3. 每个消息(也叫记录record,我习惯叫消息)是由一个key,一个value和时间戳构成。

kafka有四个核心API:

  • 应用程序使用 Producer API 发布消息到1个或多个topic(主题)中。
  • 应用程序使用 Consumer API 来订阅一个或多个topic,并处理产生的消息。
  • 应用程序使用 Streams API 充当一个流处理器,从1个或多个topic消费输入流,并生产一个输出流到1个或多个输出topic,有效地将输入流转换到输出流。
  • Connector API 可构建或运行可重用的生产者或消费者,将topic连接到现有的应用程序或数据系统。例如,连接到关系数据库的连接器可以捕获表的每个变更。

kafka入门介绍

Client和Server之间的通讯,是通过一条简单、高性能并且和开发语言无关的TCP协议。并且该协议保持与老版本的兼容。Kafka提供了Java Client(客户端)。除了Java客户端外,还有非常多的其它编程语言的客户端

首先来了解一下Kafka所使用的基本术语:

Topic

Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)。

Producer

发布消息的对象称之为主题生产者(Kafka topic producer)

Consumer

订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

Broker

已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

主题和日志 (Topic和Log)

让我们更深入的了解Kafka中的Topic。

Topic是发布的消息的类别名,一个topic可以有零个,一个或多个消费者订阅该主题的消息。

对于每个topic,Kafka集群都会维护一个分区log,就像下图中所示:

screenshot

每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。

Kafka集群保持所有的消息,直到它们过期(无论消息是否被消费)。实际上消费者所持有的仅有的元数据就是这个offset(偏移量),也就是说offset由消费者来控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。但是实际偏移量由消费者控制,消费者可以将偏移量重置为更早的位置,重新读取消息。可以看到这种设计对消费者来说操作自如,一个消费者的操作不会影响其它消费者对此log的处理。

screenshot

再说说分区。Kafka中采用分区的设计有几个目的。一是可以处理更多的消息,不受单台服务器的限制。Topic拥有多个分区意味着它可以不受限的处理更多的数据。第二,分区可以作为并行处理的单元,稍后会谈到这一点。

分布式(Distribution)

Log的分区被分布到集群中的多个服务器上。每个服务器处理它分到的分区。 根据配置每个分区还可以复制到其它服务器作为备份容错。 每个分区有一个leader,零或多个follower。Leader处理此分区的所有的读写请求,而follower被动的复制数据。如果leader宕机,其它的一个follower会被推举为新的leader。 一台服务器可能同时是一个分区的leader,另一个分区的follower。 这样可以平衡负载,避免所有的请求都只让一台或者某几台服务器处理。

Geo-Replication(异地数据同步技术)

Kafka MirrorMaker为群集提供geo-replication支持。借助MirrorMaker,消息可以跨多个数据中心或云区域进行复制。 您可以在active/passive场景中用于备份和恢复; 或者在active/passive方案中将数据置于更接近用户的位置,或数据本地化。

生产者(Producers)

生产者往某个Topic上发布消息。生产者也负责选择发布到Topic上的哪一个分区。最简单的方式从分区列表中轮流选择。也可以根据某种算法依照权重选择分区。开发者负责如何选择分区的算法。

消费者(Consumers)

通常来讲,消息模型可以分为两种, 队列和发布-订阅式。 队列的处理方式是 一组消费者从服务器读取消息,一条消息只有其中的一个消费者来处理。在发布-订阅模型中,消息被广播给所有的消费者,接收到消息的消费者都可以处理此消息。Kafka为这两种模型提供了单一的消费者抽象模型: 消费者组 (consumer group)。 消费者用一个消费者组名标记自己。 一个发布在Topic上消息被分发给此消费者组中的一个消费者。 假如所有的消费者都在一个组中,那么这就变成了queue模型。 假如所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型。 更通用的, 我们可以创建一些消费者组作为逻辑上的订阅者。每个组包含数目不等的消费者, 一个组内多个消费者可以用来扩展性能和容错。正如下图所示:
screenshot2个kafka集群托管4个分区(P0-P3),2个消费者组,消费组A有2个消费者实例,消费组B有4个。

正像传统的消息系统一样,Kafka保证消息的顺序不变。 再详细扯几句。传统的队列模型保持消息,并且保证它们的先后顺序不变。但是, 尽管服务器保证了消息的顺序,消息还是异步的发送给各个消费者,消费者收到消息的先后顺序不能保证了。这也意味着并行消费将不能保证消息的先后顺序。用过传统的消息系统的同学肯定清楚,消息的顺序处理很让人头痛。如果只让一个消费者处理消息,又违背了并行处理的初衷。 在这一点上Kafka做的更好,尽管并没有完全解决上述问题。 Kafka采用了一种分而治之的策略:分区。 因为Topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

Kafka的保证(Guarantees)

  • 生产者发送到一个特定的Topic的分区上,消息将会按照它们发送的顺序依次加入,也就是说,如果一个消息M1和M2使用相同的producer发送,M1先发送,那么M1将比M2的offset低,并且优先的出现在日志中。
  • 消费者收到的消息也是此顺序。
  • 如果一个Topic配置了复制因子(replication factor)为N, 那么可以允许N-1服务器宕机而不丢失任何已经提交(committed)的消息。

有关这些保证的更多详细信息,请参见文档的设计部分。

kafka作为一个消息系统

Kafka的流与传统企业消息系统相比的概念如何?

传统的消息有两种模式:队列发布订阅。 在队列模式中,消费者池从服务器读取消息(每个消息只被其中一个读取); 发布订阅模式:消息广播给所有的消费者。这两种模式都有优缺点,队列的优点是允许多个消费者瓜分处理数据,这样可以扩展处理。但是,队列不像多个订阅者,一旦消息者进程读取后故障了,那么消息就丢了。而发布和订阅允许你广播数据到多个消费者,由于每个订阅者都订阅了消息,所以没办法缩放处理。

kafka中消费者组有两个概念:队列:消费者组(consumer group)允许同名的消费者组成员瓜分处理。发布订阅:允许你广播消息给多个消费者组(不同名)。

kafka的每个topic都具有这两种模式。

kafka有比传统的消息系统更强的顺序保证。

传统的消息系统按顺序保存数据,如果多个消费者从队列消费,则服务器按存储的顺序发送消息,但是,尽管服务器按顺序发送,消息异步传递到消费者,因此消息可能乱序到达消费者。这意味着消息存在并行消费的情况,顺序就无法保证。消息系统常常通过仅设1个消费者来解决这个问题,但是这意味着没用到并行处理。

kafka做的更好。通过并行topic的parition —— kafka提供了顺序保证和负载均衡。每个partition仅由同一个消费者组中的一个消费者消费到。并确保消费者是该partition的唯一消费者,并按顺序消费数据。每个topic有多个分区,则需要对多个消费者做负载均衡,但请注意,相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息

kafka作为一个存储系统

所有发布消息到消息队列和消费分离的系统,实际上都充当了一个存储系统(发布的消息先存储起来)。Kafka比别的系统的优势是它是一个非常高性能的存储系统

写入到kafka的数据将写到磁盘并复制到集群中保证容错性。并允许生产者等待消息应答,直到消息完全写入。

kafka的磁盘结构 - 无论你服务器上有50KB或50TB,执行是相同的。

client来控制读取数据的位置。你还可以认为kafka是一种专用于高性能,低延迟,提交日志存储,复制,和传播特殊用途的分布式文件系统

kafka的流处理

仅仅读,写和存储是不够的,kafka的目标是实时的流处理。

在kafka中,流处理持续获取输入topic的数据,进行处理加工,然后写入输出topic。例如,一个零售APP,接收销售和出货的输入流,统计数量或调整价格后输出。

可以直接使用producer和consumer API进行简单的处理。对于复杂的转换,Kafka提供了更强大的Streams API。可构建聚合计算连接流到一起的复杂应用程序。

助于解决此类应用面临的硬性问题:处理无序的数据,代码更改的再处理,执行状态计算等。

Sterams API在Kafka中的核心:使用producer和consumer API作为输入,利用Kafka做状态存储,使用相同的组机制在stream处理器实例之间进行容错保障。

拼在一起

消息传递,存储和流处理的组合看似反常,但对于Kafka作为流式处理平台的作用至关重要。

像HDFS这样的分布式文件系统允许存储静态文件来进行批处理。这样系统可以有效地存储和处理来自过去的历史数据。

传统企业的消息系统允许在你订阅之后处理未来的消息:在未来数据到达时处理它。

Kafka结合了这两种能力,这种组合对于kafka作为流处理应用和流数据管道平台是至关重要的。

批处理以及消息驱动应用程序的流处理的概念:通过组合存储和低延迟订阅,流处理应用可以用相同的方式对待过去和未来的数据。它是一个单一的应用程序,它可以处理历史的存储数据,当它处理到最后一个消息时,它进入等待未来的数据到达,而不是结束。

同样,对于流数据管道(pipeline),订阅实时事件的组合使得可以将Kafka用于非常低延迟的管道;但是,可靠地存储数据的能力使得它可以将其用于必须保证传递的关键数据,或与仅定期加载数据或长时间维护的离线系统集成在一起。流处理可以在数据到达时转换它。

有关Kafka提供的保证,api和功能的更多信息,可继续查阅本网



您需要解锁本帖隐藏内容请: 点击这里
本帖隐藏的内容




上一条: Apache Kafka下载
下一条: Kafka的使用场景

  • 大佬,题外话。
    有什么项目适合用kafka练手

    上个厕所,又想到一个问题。
    一个Topic有多个分区A B C,但只有一个消费者组。这A B C的消息是并行处理的么(假设消费者组有2个消费者)

    • 2个消费者的话,其中1个消费者同时消费2个分区,另外一个只消费1个。

      消费者其实用程序实现的话,就是2个线程,这块自然就是并行获取,一般瓶颈不会在获取消息这块,毕竟是批量给的嘛。

      瓶颈在处理消息这块,你的业务逻辑,比如:
      消费者a拿到A组的一批消息(大概2000条,kafka是批量给消费者消息的),这个时候你怎么处理这2000条消息,是你要分发出去并行,还是一条一条处理串行,看你了。

        大佬,看到你的热心解答,我有点感动。
        我目前也有几个小问题,希望大佬看看。
        问题一
        “ Kafka采用了一种分而治之的策略:分区。 因为Topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。”
        对于单个消息组,能够按先后顺序处理的原理是不是这样:当其中一个消费者处理完后,提交offset更新,然后再移到下一个offset处理。

        问题二:
        继问题一,多个消费者组维护的offset不一定是顺序的,所以不能保证不同消费者组的消费顺序。

        问题三:
        如果一个topic有A B C三个分区,然后只有一个消费者组,里面有三个消费者,分别是a, b, c.
        如果a处理过A的消息,那a是否能也处理B的消息?
        这里面是要维护总共3个offset(分别对应A B C)对吧?
        这个offset其实是否只和消费者组相关的?

        • 这个offset只跟消费者组有关,按照你的例子来。消费者组中有a,b,c三个消费者。
          当它们同时运行之后,a消费A,b消费B,c消费C。总共维护3个offset你的理解是对的。
          这个时候,如果a消费者挂掉,kafka会进行消息平衡,将之前a消费者的A分区,分配给了b消费者。
          这时消费者b就会接着消费A分区。这时b就同时消费A和B了,c还是只消费C。

            问一个问题哈,一个topic可以有多个分区,可以分布在多个broker上。那客户端向topic写数据,是会指定topic、分区、值的是吧,那也就是只会写入topic的一个分区嘛

            • 一个消息produce之后,订阅topic的消费组内部的多个消费者,只有一个消费者能消费到这条消息,多个消费组是都能消费这个消息的,是这样的嘛

                “假如所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型。”改成这样“假如所有的消费分布在两个或两个以上的消费者组中,那么就完全变成了发布-订阅模型”,应该会不会更加严谨又便于理解呢?

                有三个broker,创建一个topic,设置分区为3,副本为3,但是我在kafka存储数据的文件夹内发现了将近50个分区,并且是均匀分布在不同的broker上面的,这两个分区有什么区别呢

                • 一个topic多个partion,一个partion对应一个文件目录,一个partion对应多个segment,一个segment中有一个XXX.log文件和一个XXX.index文件,你说的50个是不是文件个数?或者你把你的50个分区的文件名列出来看看呢。

                    分区是怎么有序的给消费者的,还有就是前面提到每个topic的每个分区,偏移量是唯一的,而不同消费者能自己控制偏移量,那这不就有两个偏移量了吗

                    想确认一个问题,是不是一个broker上一个topic只会有一个对应的分区。😄

                    • 大佬看你之前回复过一个人的提问:有个topic 有两个 分区A,B 只有一个消费者C去消费这两个分区,如果C这次拉取了分区A的消息,那么下次是一定会从B拉取消息吗(如果这段时间内分区B有新的数据进来)

                      你的回答是:嗯,拉取是一批一批的拉取的,如果你的处理数据很快,是感受不到延迟的。

                      这里我就有点疑问了,之前看你说过一个消费者会固定消费某一个分区。怎么消费了A分区,还会去消费B分区了?难道是没有消费者组的概念?

                        一个topic,多个分区,一个消费者组,如果这个消费者组订阅了该topic,那么这个消费者组将消费这三个分区的消息把?对吗?

                        博主,请问在如下情景,会出现阻塞吗:
                        有6个Topic,每个Topic都会生成3个消费者进行消费,这样就18个消费者,这个18消费者是同一个分组的,且分区为3个。
                        某个分区上的某topic的消息会被另外的topic的消费者阻塞

                        • “相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息”
                          》》我描述的情景就是:同一个分组的消费者比分区数目多,多出来的消费者肯定要等待的。而实际运行中,多出来的消费者也都有在消费,那多来出的消费者是如何被触发消费的?

                            • 我没分清楚吗?我更混淆了。
                              业务上存在6个topic,为每个topic配置3个消费者,且同一个消费者组,但是分区数目是3,这个时候不就出现了消费者数目大于分区数目吗?
                              那多出来的消费者一直处于空等待,即使存在别的消费者不会去消费,而偏偏多出来的消费者可以消费的消息,多出来的消费者还要空等待吗?

                                • 读起来有些吃力额。
                                  为每个topic配置3个消费者,且同一个组,但是分区数据是3,怎么消费者数就大于分区数了呢? 这不是3对3么。
                                  到问题专区里提问吧,尽量细致清楚一些。

                                    • "每个topic有多个分区,则需要对多个消费者做负载均衡,但请注意,相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息。" 是每个topic在同一个消费者组的消费者数目不大于分区数目